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Abstract 
 

We have developed a hierarchical planning 
method for multiple agents in worlds with significant 
levels of uncertainty.  This has resulted in expert-system 
tools (MEAGENT) for analysts and planners without 
background in artificial intelligence.   MEAGENT is 
particularly useful in analysis of counterplanning 
methods intended to thwart plans in complex situations.  
We apply heuristics to define experiments involving 
many runs of carefully modified simulations, use the 
results to quantify the effects of various 
counterplanning tactics, and then produce a 
counterplan.  We exemplify our "experimental AI" 
approach for the domain of firefighting on ships. 
 
Key Words: Counterplanning, planning, intelligent 
agents, forecasting and prediction, firefighting 
 
1. The Planner 
 

Our multi-agent planner for stochastic situations 
MEAGENT is a Prolog system using an old idea in 
artificial intelligence, means-ends analysis [8] as well as 
more modern ideas [5].  Means-ends is a form of goal-
directed behavior that hierarchically decomposes plans 
into precondition and postcondition subtrees.  This 
requires formal definition of actions or “operators” by 
their preconditions, deletion and addition 
postconditions, and most importantly, recommendation 
conditions [12].   A plan is represented as a tree and 
decomposed until null subtrees, or tasks involving only 
preconditions already achieved, are present at all leaves.  
Means-ends goals can be full boolean expressions with 
negations and disjunctions as well as conjunctions.  
While other planning methods can find the best 
solutions to planning problems, means-ends provides a 
more intuitive basis to planning and a good predictor of 
human behavior. 

 
Means-ends planning easily handles unexpected 

events: Just replan with the original goal conditions.  So 
stochastic effects of operators are naturally 
accommodated.  Replanning can also be made efficient 
by caching recommended actions for subproblems as 

they are discovered [9], so caching of subplans is not 
necessary as with some other methods [12].  Stochastic 
effects can be a probability of failure of an action (as of 
trying to extinguish a fire), modification of state (as 
when a fire that is out flares up again), a mistake by an 
agent (as when someone mistakenly turns the power 
back on when the fire is not confirmed to be out), or 
just a random variable associated with the duration of 
each action.  Such effects can also be made situationally 
dependent, so that the probability of an explosion is 
higher while the power is on. We have used random 
events in many tutors for procedural skills in military-
training tasks, where indeterminancy teaches students 
how to respond to a wide variety of crises that would be 
costly to simulate without a computer. 

 
We extend stochastic means-ends analysis to real-

time multi-agent paradigms by associating each action 
with a priority list of agents qualified to accomplish it.  
Agents represent different people (as on a team) and 
physical processes (such as fire and flooding); animate 
agents change states by planning whereas inanimate 
agents change states by difference equations.  Agents 
plan independently to achieve their goals, assuming 
cooperation as necessary from other agents.  They have 
skill levels for each task which are parameters in the 
stochastic process of calculating a duration and success 
probability for an action.  Agents have resource 
limitations in that they cannot do more than one 
operator in the same time interval, and certain resources 
(such as a fire hose) cannot be shared.  Arbitrary 
computations may be embedded to define the state 
changes of inanimate agents. 

 
Agents can have both preassigned responsibilities 

(the electrician is responsible for electrical devices) as 
well as dynamically assigned responsibilities (like 
holding the fire hose). An agent can be active (doing a 
task), idle (if its goals are achieved), or waiting (if its 
goals are not achieved but it has nothing to do).  Since 
we are primarily interested in modeling task-related 
teams, dynamic assignment is done in our model by an 
order-report paradigm.  A superior gives an order to a 
particular idle subordinate to accomplish a particular set 
of goal conditions.  The order "wakes up" the 



 

subordinate agent if it is idle.   It then constructs its own 
plan to accomplish the goals, executes the plan, reports 
back to its superior, and the initiating order is deleted 
from the state.    The order-report paradigm permits 
modeling of incomplete knowledge by agents.  In some 
cases the subordinate agent may require the help of an 
assistant (as in trying to extinguish a fire using a bulky 
hose) which requires sub-orders to the assistant. 

 
The simulation of actions also adjusts the states 

with results of concurrent actions that terminated during 
the time interval of the original action.  It permits 
actions to be aborted by other actions in high-priority 
circumstances and when preconditions become false.  
For instance, if a fire reignites when a crewman is 
ventilating a compartment, the crewman must cease 
ventilation and initiate extinguishment. 

 
MEAGENT is easy to adapt to new applications 

by providing definitions of new operators and agents 
through our tools [9].  They eliminate the need of 
experts to program to implement a simulation.  A Prolog 
reasoning engine provides essential automatic 
backtracking during plan construction.  MEAGENT is 
suitable for many team activities, such as office-task 
automation, manufacturing, routine military procedures, 
and sports teams. 

 
2.  An Example: Ship Firefighting 
 

We describe an application of MEAGENT to 
firefighting on U.S. Navy ships, a critical skill with 
which all ship personnel must be familiar [11].  Since a 
physical experiment is risks human lives and expensive 
resources, agent-based simulation is essential to find 
bottlenecks and potential problems.  (Critical-path 
analysis does not work well when there are significant 
stochastic effects or complex logical dependencies 
between actions, both characteristics of this and many 
other emergency-response tasks.)  Generally the cost of 
a firefighting plan is assessed as the total time to 
complete it. 

 
The agents in this simulation are the fire-team 

leader (or “scene leader”), the members of the fire team 
including at least an electrician, nozzleman, and 
hoseman, the command center monitoring alarms and 
giving orders to the team leader, and the fire itself.  
Figure 1 gives the simplest deterministic means-ends 
tree when no interruptions or surprises occur (although 
this is rare in both real firefighting and our tailored 
simulation) [6, 10].  

 
Random events include casualties, availability of a 

medic, communication failures, equipment 
malfunctions, and whether the oxygen is safe when 
tested after the fire is out.  Action durations are random 
variables depending on the skill level of the assigned 
agent, the fire size, the kind of tool used, smoke 
intensity, and water magnitude.  For instance, the time 
to desmoke is a uniform random variable with mean 
0.8*(Smoke/Skill) and standard deviation 0.75 of that.    

 

The fire agent uses a stochastic epidemic model of 
fire growth that is applied to one-minute time steps.  Its 
parameters are the fire type (there are four standard 
ones) and amount of flammable material, ignition and 
burnout rates, and the conditions affecting burnout 
(self-extinguishment) and flashover (sudden 
combustion of all flammable materials when the 
temperature gets very high).  If the fire size exceeds a 
low threshold, an alarm sensor is signaled in the 
Command Center of the ship, and they order the fire 
team to the scene.  Extinguishing is modeled by a 
negative ignition rate except when the wrong method is 
being used.  Rates have random fluctuations to reflect 
the variety of different materials available to burn and 
the complexities of fire spread.  

 
3. Plan Analysis for Counterplanning 

 
Obstructive counterplanning is planning to 

interfere with or frustrate an existing plan [3].  There 
are two important kinds: Counterplanning in an 
adversarial situation, as in military defensive planning, 
and planning in an educational environment, as in the 
choice of obstacles presented by the system to the user 
in game-like tutors.  In both cases the counterplan can 
be rated on the induced change to the cost of the plan, 
typically measured in time, physical effort, mental 
effort, or some combination thereof.  In adversarial 
counterplanning the objective is to find the counterplan 
with largest benefit (negative effect on plan cost) minus 
counterplan cost, taking any uncertainty into account 
via decision theory.  In educational counterplanning the 
objective is usually to provide accidents and unexpected 
conditions that require replanning that is neither too 
easy nor too hard, as well as manifesting a degree of 
variety.  [2] endorses hierarchical planning much like 
means-ends as a good basis for planning in adversarial 
situations. 
 
3.1 Analysis of Skills Criticality 
 

One way to attack a multiagent plan is to interfere 
with the ability or readiness of agents to participate in 
it.  But a good counterplanner should apportion their 
resources carefully since not all abilties are equally 
important.  MEAGENT provides an tool to conduct 
experiments to guide such resource allocation. 

 
For example, experiments assessed teams with 

different skill levels in firefighting [1]. 100 trials were 
done for 27 skill combinations (of high, medium, and 
low values) for a fire team of four members where the 
nozzlemen and the hosemen have the same skill levels.  
Two kinds of fire locations were used, a highly 
inflammable compartment and a more typical 
compartment.  We measured performance of a team as 
the time elapsed between the first appearance of the fire 
and the recording of the completion of debriefing by the 
Command Center.  An upper limit on simulation 
duration of 400 minutes was enforced for when the fire 
recurs numerous times.  Figure 2 shows typical data, 
showing that the tail of the distribution is not Gaussian. 
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Figure 1: Plan tree for firefighting in a single compartment with no unexpected events. 
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Figure 2: Histogram for total time for 100 runs of firefighting for ignition rate=0.5, burn-out rate=0.25, and all 
members with skill level 0.1. 



 

 
 
Experiments permitted concrete guidelines for staffing 
policies for Navy fire teams: 

 
• When  the fire spreads faster, and the amount 

of material that burns out is very high, the 
percentage of intact inflammables at the end of 
action is going to be low, no matter what the 
composition of a team.  Otherwise, 
performance is sensitive to team skill levels. 

• The skills of the electrician did not much affect 
overall team performance; skills for the 
hosemen/nozzlemen were critical; and skills of 
the scene leader were important but not 
critical. 

 
3.2 Systematic Counterplanning 
 

But in general, counterplanning should try to 
change nonnumeric aspects of a plan, as fixing matters 
by the planner often then requires both additional 
thinking and time.  MEAGENT provides a way to do 
such “systematic counterplanning”: (1) Create a 
standard "base" plan; (2) change states within the plan 
by one fact each in every possible way (i.e., investigate 
counterplanning "ploys"), and replan to accomplish 
each agent's goals after each ploy; (3) infer the degree 
of damage due to each ploy; (4) construct counterplans 
to accomplish each ploy and calculate their costs to the 
counterplanner; and (5) select the best cumulative 
counterplan that accomplishes the best set of ploys at 
the minimum cost.  Step (2) is analogous to the idea of 
partial derivatives of a continuous function.  If the base 
plan involves S states, and the average state can be 
modified in M ways, we must replan MS times to assess 
the effects of each change.  A replanning from state K 
from the end of the base plan involves selecting an 
action at each of K states, so systematic 
counterplanning requires about 0.5MS2 action 
selections for a single linear plan.  This approach is 
much more suitable for machine implementation than 
the very-general top-down approach of [3], which is 
mainly intended for understanding narrative accounts of 
counterplanning, or the general criteria for 
organizational maladaptivity of [4], which propose 
subgoals like that of discouraging intra-organization 
communication without suggesting specific 
mechanisms to do so.  

 
To find all possible ploys, pairs of opposite facts 

can be inferred if the opposite fact is always added 
whenever an operator or random change deletes the 
original fact, with the additional condition that the two 
facts never appear together in the same state or operator 
condition list.  For example, "safe(gases)" is an opposite 
of "unsafe(gases)".  Otherwise, facts that are deleted by 
at least one operator or random change are considered 
facts deletable from any state in which they occur, and 
facts that are added by at least one operator or random 
change are considered facts addable to any state. In 
firefighting, "raging(fire)" is deletable by 

extinguishment, and "smokey" is addable by the fire 
agent for a new fire.   In addition, a good 
counterplanner will try if possible add facts that have 
not been considered in any of the planner's plans, such 
as fires in new locations or physical obstructions, but a 
good planner should be robust and have anticipated 
such changes, so we do not consider them here. 

 
A problem in inferring possible changes to states 

is that good planning generally involves generalized 
reasoning with methods using variables.  Generality can 
be preserved with deletions, but for additions and 
changes to states we must instantiate most variables 
since states must be concrete.  We do this by inferring, 
for each variable that can appear in a state, its possible 
instantiations.  For instance in firefighting, 
"ordered(F,P1,P2)" specifies that person P1 has ordered 
person P2 to make fact F become true; P1 and P2 must 
be instantiated to people in a superior-subordinate 
relationship, and F must be instantiated to a fact or its 
negation that can be accomplished.  Using the 
firefighting specifications for instance for states for a 
single fire at a single location and its cleanup, we found 
after instantiation around 93 possible changes to a 
random state consisting of around 6 changes of facts to 
their opposites, 26 deletions of facts, and 61 additions 
of facts. 

 
Since MEAGENT is intended for stochastic 

models, we must conduct many runs with the same 
starting state and goals to assess a change – at least 100 
for firefighting, as discovered in the skills-effect 
analysis.  We also need to try different base plans 
created by different random choices on which to make 
changes to states, since qualitatively different states are 
encountered in different plans  -- in firefighting we 
found 100 runs were necessary on the average to see 
one flashover event.  Since the average firefighting plan 
involves 41 animate-agent actions and 96 states (the fire 
and random occurrences creates state changes on their 
own), full counterplanning analysis of firefighting 
involves 0.5*93*96*96*100*100 =  4,285,440,000 
action selections.  At our typical 0.05 seconds per 
selection in Gnu Prolog on a two-year-old machine, this 
requires an impractical 2290 days, although we could 
sample the change space to approximate a solution.  
This is just for a single fire, and many more states are 
possible for multiple fires. 

 
But if we proceed with this approach, after each 

set of runs with the same parameters we will have a 
distribution of costs associated with each kind of 
change.  Cost distributions that are significantly 
different from one another are likely to reflect 
meaningful logical distinctions worth investigating.  
The technique of analysis of variance can identify such 
pairs if they are normally distributed.  Otherwise, as for 
emergency-oriented planning like that shown in Figure 
2, we may be able to partition the normal part of the 
distribution from a tail and analyze it separately.   
Doing that for firefighting by making changes to states 
at representative times in a representative run and then 



 

replanning, we found 69% of the changes resulted in 
behavior more than two standard deviations away from 
normal.  An equal number were cost-increasing and 
cost-decreasing, with the latter becoming more common 
towards the end of the plan. 

 
3.3 Efficient Counterplanning 

 
Systematic counterplanning can be made much 

more efficient by reasoning to eliminate redundant 
experiments.  One idea we use is to collapse analysis of 
identical states in different runs, building a Markov 
state model with state-transition probabilities.  State 
identity can be qualitative to further reduce the 
possibilities.  In firefighting for instance, differences in 
fire, smoke, and water size do not affect planning.  So 
we found only 2,496 distinct states in 60,360 actual 
states in 500 runs (and 2,166 in 250 runs), which 
shortens our work by a factor of 24.2. 

 
A second efficiency idea is to logically infer sets 

of states that require identical responses to a 
counterplanning ploy.  Typically, a single ploy affects 
only a few actions in a plan.  Thus the ploy will not 
affect planning within a period of time after the state to 
which it is applied – this is what makes good planning 
still valuable in environments with significant 
uncertainty.  Let ploy C be a single change made to a 
state, either a deletion of a fact D, an addition of a fact 
A, or change of D to its opposite A.  Let the "fix plan" 
be the plan to respond to ploy C by directing the agents 
back to a known state. Then three inference methods 
apply.  (1) "Forward temporal inheritance": Action X in 
previously completed plan P is unaffected by prior ploy 
C at state S if X and all actions between S and X do not 
require D, do not require not (A), do not add fact D, or 
do not delete fact A.  (2) "Forward temporal ploy 
cancellation": Actions in a previously completed plan P 
have a null fix plan for ploy C if they follow or are 
identical to an action X after C that adds fact A or 
deletes fact D.  (3) "Plan following": States after ploy C 
resulting from performing one action in its fix plan have 
a new fix plan which is the rest of the actions in the 
original fix plan.  For example, consider the ploy, in 
firefighting after the fire is out, of a saboteur preventing 
the electrician from reporting to the scene leader that 
the fire area is desmoked.  Such a report is only 
necessary as a precondition to having the fire team 
return to the repair locker, so the "fix plan" would be to 
wait until that point when the missing information is 
realized and have the scene leader find the electrician 
and ask about the smoke (or alternatively check the fire 
area themselves, but this would undercut the 
electrician's responsibilities and would be an inferior fix 
plan).  This fix plan will temporally inherit forward 
from any state after the fire is out up to the action of 
returning to the repair locker, including all states 
resulting from random events.  The fix plan will be 
cancelled if a random event occurs that the electrician 
manages to report the desmoking.  A plan-following 
inference would occur if some possible action before 
returning to the repair locker results in finding the 
electrician, subsequent states of which can then infer a 

simpler fix plan of just asking the electrician if the fire 
area is desmoked. 

 
Our inference rules apply to several kinds of fix-

planning strategies.  The two most obvious are to 
immediately plan to undo the effects of C before 
resuming the original plan (a "lazy repair") or to plan to 
achieve the original goals from the new state 
("radical").  Repair fix-plans will be significantly faster 
to build than radical fix-plans in most cases, but may 
result in suboptimal overall behavior because ploy C 
may affect reasons for the actions in the original plan, 
while not affecting its adequacy.  Adequacy usually 
suffices because people are creatures of habit and prefer 
to persist with now-suboptimal original plans.  
However, if C results in the final state of the plan not 
satisfying the original goals after repair, more 
replanning must be done even with lazy repair. 

 
The inference methods suggest a ploy taxonomy.  

Ploy C can be ignored after a state if temporal 
inheritance of an empty fix plan extends to the end of 
the plan.  For instance in firefighting, deletion of the 
fact that the oxygen tester itself has been tested makes 
no difference after the fire is out and the oxygen is 
found to be safe.  Ploy C can also be ignored if it 
reduces the cost of the plan.  For instance, turning off 
the power at the fire scene is doing something that 
always needs to be done and does not hurt doing early.   
Depending on the application, ploy C may also be 
ignored if it is undoable by a single action (i.e., if the 
lazy repair plan is trivial).  For instance, the ploy of 
turning the power on can be easily undone by turning it 
back off.  All ploys not in these three categories can be 
thus considered nontrivial to address. 

 
For our example of firefighting, we found 93 

possible ploys, which interfered with 4.3% of the states 
in an average plan; 2.8% of these involved violation of 
conditions associated with an action applied to that 
state, and 1.5% were cancelled by an action.  Our three 
kinds of inferences found an average of 1.2 additional 
states for which a fix plan could be used; in addition, fix 
plans need only be calculated to reach known states, 
reducing the fix-plan planning effort to 36% of the 
typical original planning effort at a state.  This 
reduction in effort of 16.2% combined with the 
reduction due to the Markov state model reduced the 
effort of counterplanning to 0.67% of that of the 
systematic approach, reducing expected time from 2290 
to a 15.3 days, making it practicable. 

 
3.4 Using Costs in Counterplanning 

 
Finally, after promising changes to a plan have 

been determined and their costs computed, we can 
formulate a counterplan to most cost-effectively foil the 
plan.  We cannot generalize too much here because 
counterplanning requires predominantly different 
operators than planning (including deception), as 
suggested by the heuristics in [3] and illustrated in 
attacks on computer systems [10].  For instance, a 
firefighting saboteur can turn the power off, make 



 

equipment inoperable, pour gasoline around, disconnect 
the hose during extinguishment and plead ignorance, 
report incorrectly that they have checked oxygen, or 
relay incorrect or fake orders to subordinates.  But such 
actions are only possible surreptitiously, thus requiring 
costly waiting time until circumstances are favorable 
and a particular probability of failure to account for.  
There are also potential nonlinear effects for the 
counterplanner to deal with, such as that one successful 
sabotage may make the next one harder as agents 
become aware that something is wrong, or that minor 
independent changes to a state may cause an agent to 
question their memory and become overly cautious.  
These nonlinear effects can be very significant; so since 
communications in crises are always problematic, 
communications ploys like ignored orders may be 
among the most successful deceptions. 

 
However the tactics are selected, we can evaluate 

the counterplan costs and compare them to the benefits 
of sets of damaging changes to the plan.  A* search is a 
classic way to do this tradeoff in combinatorial 
problems, and game theory can be used to plan for 
counter-responses to counterplans, and so on.  Besides 
firefighting, we are currently investigating models of 
aircraft-carrier flight-deck operations and attacks by 
hackers on computer systems. 
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